The ALHAMBRA survey: Discovery of a faint QSO at z = 5.41

Matute, I.; Masegosa, J.; Márquez, I.; Fernández-Soto, A.; Husillos, C.; del Olmo, A.; Perea, J.; Pović, M.; Ascaso, B.; Alfaro, E. J.; Moles, M.; Aguerri, J. A. L.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Cano, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Infante, L.; González Delgado, R. M.; Martínez, V. J.; Molino, A.; Prada, F.; Quintana, J. M.
Bibliographical reference

Astronomy and Astrophysics, Volume 557, id.A78, 6 pp.

Advertised on:
9
2013
Number of authors
26
IAC number of authors
3
Citations
14
Refereed citations
13
Description
Aims: We aim to illustrate the potentiality of the Advanced Large, Homogeneous Area, Medium-Band Redshift Astronomical (ALHAMBRA) survey to investigate the high-redshift universe through the detection of quasi stellar objects (QSOs) at redshifts higher than 5. Methods: We searched for QSOs candidates at high redshift by fitting an extensive library of spectral energy distributions - including active and non-active galaxy templates, as well as stars - to the photometric database of the ALHAMBRA survey (composed of 20 optical medium-band plus the 3 broad-band JHKs near-infrared filters). Results: Our selection over ≈1 square degree of ALHAMBRA data (~1/4 of the total area covered by the survey), combined with GTC/OSIRIS spectroscopy, has yielded identification of an optically faint QSO at very high redshift (z = 5.41). The QSO has an absolute magnitude of ~-24 at the 1450 Å continuum, a bolometric luminosity of ≈2 × 1046 erg s-1, and an estimated black hole mass of ≈108 M⊙. This QSO adds itself to a reduced number of known UV faint sources at these redshifts. The preliminary derived space density is compatible with the most recent determinations of the high-z QSO luminosity functions. This new detection shows how ALHAMBRA, as well as forthcoming well-designed photometric surveys, can provide a wealth of information on the origin and early evolution of this kind of object.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies

Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to

Jairo
Méndez Abreu
Project Image
Evolution of Galaxies

Galaxy evolution is a crucial topic in modern extragalactic astrophysics, linking cosmology to the Local Universe. Their study requires collecting statistically significant samples of galaxies of different luminosities at different distances. It implies the ability to observe faint objects using different techniques, and at different wavelengths

Jorge
Cepa Nogue