All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star–black-hole binaries. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. We report here radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. The star was initially discovered during a monitoring campaign with the 4-m telescope LAMOST and subsequently studied in more detail with the 10-m class telescopes GTC and Keck. We find that the motion of the B star and a superimposed Hα emission line (see figure) require the presence of a dark companion with a mass of 68 solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. For comparison, black holes detected in X-ray binaries have masses in the range 5-15 solar masses. On the other hand, gravitational-wave experiments have detected black holes with several tens of solar masses. However, the formation of a ~70 solar mass black hole in a high-metallicity environment is extremely challenging within current stellar evolution theories. This would require a significant reduction in wind mass-loss rates and overcoming the pair-instability supernova phase, which limits the maximum black hole mass to less than ~50 solar masses. Alternatively, the black hole in LB-1 might have formed after a binary black hole merger or other exotic mechanisms.
It may interest you
-
A team of scientists led by the Observatory of Munich University and the Instituto de Astrofísica de Canarias have obtained direct visualization of the process of feeding the supermassive black hole at the centre of the Andromeda galaxy. The study reveals the existence of long filamentary structures of gas and dust which move in a spiral starting at a distance from the black hole and ending up at the black hole itself. The results, which have been published in the Astrophysical Journal, were obtained using images from the Hubble and Spitzer space telescopes. The Andromeda Galaxy, which isAdvertised on
-
The annual meeting of the DALI (Dark-photons & Axion-Like particles Interferometer) experiment, an international collaboration to develop an astroparticle detector for the first direct observation of dark matter, was held on 7 and 8 February at the IAC headquarters in La Laguna. The various proofs of concept carried out over the last few years have given rise to a prototype, manufactured at the IAC's instrumentation facilities, whose first scientific results are expected to be published soon. The main goal of DALI is to search for dark matter axions and paraphotons in a spectral range thatAdvertised on
-
Researchers Julia de León and Javier Licandro of the Instituto de Astrofísica de Canarias (IAC) are participating in the Hera mission of the European Space Agency (ESA) , successfully launched from Cape Canaveral, Florida (USA) on 7th October at 14:52 UTC. This is the first European mission for planetary defence which together with NASA’s DART (Double Asteroid redirection Test) will study the effects of a technique for diverting asteroids called “ kinetic impactor”. The DART probe crashed into the smaller ( Dimorphos) of the two asteroids which form the binary system Didymos, on SeptemberAdvertised on