Superclusters are the largest over-dense, relatively isolated systems in the cosmic web. They provide us invaluable information about the large-scale structure formation at different cosmic epochs, as well as they are excellent places for understanding galaxy evolution in detail. Thanks to the new SDSS-III data, we can extend our knowledge of superclusters to the redshift range above z=0.4. We used data from the twelfth data release of the Sloan Digital Sky Survey (SDSS). Using a sample of more than 500,000 galaxies up to z~0.8, we reconstructed the large-scale luminosity-density field and we used it to detect large-scale over-dense regions. The largest structure in this field, that we called the BOSS Great Wall (BGW), is located at z~0.47 and consisted of two walls with diameters ~180 h-1 Mpc each. The BGW is the larger in volume and diameter structure than any previously known superclusters. Other known superclusters, like the Sloan Great Wall or Laniakea are almost half the size of the BGW. In addition, the BGW contains 830 galaxies and the total mass of our system is at least two times higher than any other superclusters. These characteristics make the BOSS Great Wall the richest, and largest system found in the Universe, and one of the most massive structures ever known.
Advertised on
References
It may interest you
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on
-
The universality of the stellar initial mass function (IMF) is one of the most widespread assumptions in modern Astronomy and yet, it might be flawed. While observations in the Milky Way generally support an IMF that is invariant with respect to the local conditions under which stars form, measurements of massive early-type galaxies systematically point towards a non-universal IMF. To bridge the gap between both sets of evidence, in this work we measured for the first time the low-mass end of the IMF from the integrated spectra of a Milky Way-like galaxy, NGC3351. We found that the slope ofAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on