The number of present-day massive galaxies that has survived untouched since their formation at high-z is an important observational constraint to the hierarchical galaxy formation models. Using three different semianalytical models based on the Millenium simulation, we quantify the expected fraction and number densities of the massive galaxies form at z>2 which have evolved in stellar mass less than 10% and 30%. We find that only a small fraction of the massive galaxies already form at z~2 have remained almost unaltered since their formation (<2% with Delta_M*/M*<0.1 and <8% with Delta_M*/M*<0.3). These fractions correspond to the following number densities of massive relics in the present-day Universe: ~1.2x10^-6 Mpc^-3 for Delta_M*/M*<0.1 and ~5.7x10^-6 Mpc^-3 for Delta_M*/M*<0.3. The observed number of relic candidates found in the nearby Universe is today pretty uncertain (with uncertainties up to a factor of ~100) preventing to establish a firm conclusion about the goodness of current theoretical expectations to predict such important number.
Advertised on
References
It may interest you
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on
-
In the 90s, the COBE satellite discovered that not all the microwave emission from our Galaxy behaved as expected. Part of this signal was later assigned to a fresh new emission component, spatially correlated with the Galactic dust emission, which showed greater importance in the microwave range of frequencies. It has been named since as “anomalous microwave emission”, or AME. The current main hypothesis to explain the AME origin is that it is emitted by small dust particles which undergo fast spinning movements. In Fernández-Torreiro et al. (2023), we study the observational properties ofAdvertised on