The number of present-day massive galaxies that has survived untouched since their formation at high-z is an important observational constraint to the hierarchical galaxy formation models. Using three different semianalytical models based on the Millenium simulation, we quantify the expected fraction and number densities of the massive galaxies form at z>2 which have evolved in stellar mass less than 10% and 30%. We find that only a small fraction of the massive galaxies already form at z~2 have remained almost unaltered since their formation (<2% with Delta_M*/M*<0.1 and <8% with Delta_M*/M*<0.3). These fractions correspond to the following number densities of massive relics in the present-day Universe: ~1.2x10^-6 Mpc^-3 for Delta_M*/M*<0.1 and ~5.7x10^-6 Mpc^-3 for Delta_M*/M*<0.3. The observed number of relic candidates found in the nearby Universe is today pretty uncertain (with uncertainties up to a factor of ~100) preventing to establish a firm conclusion about the goodness of current theoretical expectations to predict such important number.
Advertised on
References
It may interest you
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on
-
Asteroids are the remnants of the planetary formation in the Solar System and so, their study helps us to understand the conditions during the early stages of the formation of our planetary system. Among asteroids, those classified as primitives present similar spectra to that of carbonaceous chondrites, i.e., they are rich in carbon and organic compounds and silicates altered by the presence of liquid water (phyllosilicates). Primitive asteroids are well characterized in various wavelength regions, showing their most diagnostic feature at 3μm. However, there is a lack of information in theAdvertised on