One remaining open question regarding the physical properties of Lyaemitters (LAEs) is their dust content and its evolution with redshift. The variety of results is large and with those reported by now is difficult to establish clear relations between dust, other fundamental parameters of galaxies (star-formation rate, metallicity or age) and redshift. In this Letter, we report Herschel PACS-100mm, PACS-160mm and Spitzer MIPS-24mm detections of a sample of spectroscopically GALEX-selected LAEs at z~0.3 and~1.0. Five out of ten and one out of two LAEs are detected in, at least, one PACS band at z~0.3 and~1.0z, respectively. These measurements have a great importance given that they allow us to quantify, for the first time, the dust content of LAEs from direct FIR observations. MIPS-24mm detections allow us to determine IR properties of the PACS-undetected LAEs. We obtain that mid-IR/FIR detected star-forming (SF) LAEs at z~0.3 have dust content within 0.75 ≤ A1200Å ≤ 2.0, with a median value of A1200Å ~1.1. This range broadens out to 0.75 ≤ A1200Å ≤ 2.5 when considering those LAEs at z~1.0. Only one SF LAE is undetected both in MIPS-24mm and PACS, with 0.75 ≤ A1200Å ≤ 2.5. These results seem to be larger than those reported for high-redshift LAEs and, therefore, although an evolutionary trend is not clearly seen, it could point out that low-redshift LAEs are dustier than high-redshift ones. However, the diverse methods used could introduce a systematic offset in the results.
Advertised on
References
It may interest you
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on
-
Asteroids are the remnants of the planetary formation in the Solar System and so, their study helps us to understand the conditions during the early stages of the formation of our planetary system. Among asteroids, those classified as primitives present similar spectra to that of carbonaceous chondrites, i.e., they are rich in carbon and organic compounds and silicates altered by the presence of liquid water (phyllosilicates). Primitive asteroids are well characterized in various wavelength regions, showing their most diagnostic feature at 3μm. However, there is a lack of information in theAdvertised on
-
It is well known that fullerenes – big, complex, and highly resistant carbon molecules with potential applications in nanotechnology – are mostly seen in planetary nebulae (PNe); old dying stars with progenitor masses similar to our Sun. Fullerenes, like C60 and C70, have been detected in PNe whose infrared (IR) spectra are dominated by broad unidentified IR (UIR) plateau emissions. The identification of the chemical species (structure and composition) responsible for such UIR emission widely present in the Universe is a mystery in astrochemistry; although they are believed to be carbon-richAdvertised on