In some AGN, nuclear dust lanes connected to kpc-scale dust structures provide all the extinction required to obscure the nucleus, challenging the role of the dusty torus proposed by the Unified Model. In this letter we show the pc-scale dust and ionized gas maps of Circinus constructed using sub-arcsec-accuracy registration of infrared VLT AO images with optical Hubble Space Telescope images. We find that the collimation of the ionized gas does not require a torus but is caused by the distribution of dust lanes of the host galaxy on ~10 pc scales. This finding questions the presumed torus morphology and its role at parsec scales, as one of its main attributes is to collimate the nuclear radiation, and is in line with interferometric observations which show that most of the pc-scale dust is in the polar direction. We estimate that the nuclear dust lane in Circinus provides 1/3 of the extinction required to obscure the nucleus. This constitutes a conservative lower limit to the obscuration at the central parsecs, where the dust filaments might get optically thicker if they are the channels that transport material from ~100 pc scales to the centre.
Advertised on
It may interest you
-
The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy's total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxiesAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on
-
The properties of blue supergiants are key for constraining the end of the main sequence phase, a phase during which massive stars spend most of their lifetimes. The lack of fast-rotating stars below 21.000K, a temperature around which stellar winds change in behaviour, has been proposed to be caused by enhanced mass-loss rates, which would spin down the star. Alternatively, the lack of fast-rotating stars may be the result of stars reaching the end of the main sequence. Here, we combine newly derived estimates of photospheric and wind parameters, wind terminal velocities from the literatureAdvertised on