Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses per year. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
It may interest you
-
Using observations made with the James Webb Space Telescope (JWST), an international scientific team, in which the Instituto de Astrofísica de Canarias (IAC) participates, has confirmed variations in morning and evening atmosphere of the exoplanet WASP-39 b, about 700 light-years away from Earth. The research has revealed differences in temperature and atmospheric pressure, as well as indications of different cloudiness and winds that could reach thousands of miles per hour. The results are published in Nature. WASP-39 b, a giant planet with a diameter 1.3 times greater than Jupiter, butAdvertised on
-
UNDARK is a pioneering project led by the Instituto de Astrofísica de Canarias (IAC) bringing together outstanding international institutions in the fields of astrophysics, cosmology, and particle physics. Funded for three years via the 'Widening' programme of the European Union, its objective is to tackle one of the major puzzles of contemporary physics: the dark universe. The major part of the Cosmos is composed by the so-called “dark universe”. Barely 18% of the total matter in the universe is made up of the elements in atoms with which we are familiar, while the remaining 82%, termedAdvertised on
-
The first Large-Sized Telescope (LST) prototype of the Cherenkov Telescope Array Observatory (CTAO), located at the Roque de los Muchachos Observatory (Garafía, La Palma), has made its first scientific discovery by detecting the source OP 313 above 100 gigaelectronvolts (GeV), a level of energy a billion times higher than the visible light that humans can perceive. It is the most distant quasar ever observed by gamma-ray instruments from the ground. On 15 December, the Large-Sized Telescope (LST) Collaboration announced through an Astronomer’s Telegram (ATel) the detection of the source OPAdvertised on