News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Evolution of large-scale structure as calculated by supercomputers. The boxes show how filaments and superclusters of galaxies grow over time, from billions of years after the Big Bang to current structures. Credit: Modification of work by CXC/MPE/V. Springel
    The detection of the axion would mark a key episode in the history of science. This hypothetical particle could resolve two fundamental problems of Modern Physics at the same time: the problema of Charge and Parity in the strong interaction, and the mystery of dark matter. However, in spite of the high scientific interest in finding it, the search at high radio frequency -above 6 GHz- has been almost left aside for the lack of the high sensitivity technology which could be built at reasonable cost. Until now.
    Advertised on
  • Artistic impression of the super-Earth in orbit round the red dwarf star GJ-740. Credit: Gabriel Pérez Díaz, SMM (IAC).
    In recent years there has been an exhaustive study of red dwarf stars to find exoplanets in orbit around them. These stars have effective surface temperatures between 2400 and 3700 K (over 2000 degrees cooler than the Sun), and masses between 0.08 and 0.45 solar masses. In this context, a team of researchers led by Borja Toledo Padrón, a Severo Ochoa-La Caixa doctoral student at the Instituto de Astrofísica de Canarias (IAC), specializing in the search for planets around this type of stars, has discovered a super-Earth orbiting the star GJ 740, a red dwarf star situated some 36 light years
    Advertised on
  • HST imaging and narrow and broad components ALMA maps of ID2299 (adapted from Puglisi et al. 2021).
    Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses
    Advertised on
  • Distribution of red luminous galaxies and the corresponding cosmic web at redshift 0.4-0.7 using 10 redshift snapshots to describe the cosmic evolution in the computations (left panel; galaxies and the underlying cosmic web in red and grey, respectively). The primordial density fluctuations at redshift 100 are shown in the right panel. It is shown how the survey mask and radial selection effects are considered and the whole volume in the box is sampled with Bayesian models.
    We present COSMIC BIRTH (COSMological Initial Conditions from Bayesian Inference Reconstructions with THeoretical models): an algorithm to reconstruct the primordial and evolved cosmic density fields from galaxy surveys on the light-cone. The displacement and peculiar velocity fields are obtained from forward modelling at different redshift snapshots given some initial cosmic density field within a Gibbs-sampling scheme. This allows us to map galaxies, observed in a light-cone, to a single high redshift and hereby provide tracers and the corresponding survey completeness in Lagrangian space
    Advertised on
  • The presence of ionized gas around galaxies with moves with them leaves a trace in the microwave background radiation (left panel) which can be detected knowing the pattern of velocities of the galaxies provided by the map of fluctuations in their redshift (right panel). Credit: Carlos Hernández-Monteagudo (IAC).
    Scientists estimate that dark matter and dark energy together are some 95% of the gravitational material in the universe while the remaining 5% is baryonic matter, which is the “normal” matter composing stars, planets, and living beings. However for decades almost one half of this matter has not been found either. Now, using a new technique, a team in which the Instituto de Astrofísica de Canarias (IAC) has participated, has shown that this “missing” baryonic matter is found filling the space between the galaxies as hot, low density gas. The same technique also gives a new tool that shows
    Advertised on
  • Firma acuerdo IAC y CNRS
    El Instituto de Astrofísica de Canarias (IAC) y el Centre National de la Recherche Scientifique (CNRS), el mayor organismo público de investigación de Francia, firmaron ayer, reunidos por videoconferencia y en el marco de las actividades de la XXVI Cumbre Hispano-Francesa, un acuerdo por el que se establece la creación del primer laboratorio internacional del CNRS en territorio español. Firmaron el convenio el Dr. Guy Perrin, director del I nstitut National des Sciences de l'Univers ( INSU ) del CNRS, y el Prof. Rafael Rebolo, director del IAC, en presencia de otros miembros directivos y
    Advertised on