Gamma rays from the Universe’s middle age: pushing Very High Energy Astrophysics boundaries with MAGIC

Authors
Dr.
Marina Manganaro
Date and time
1 Dec 2015 - 11:30 Europe/London
Address

Aula

Talk language
English
Slides language
English
Serie number
1
Description

The search for detection of gamma-rays in the very-high-energy range (VHE, >100GeV) from distant AGNs by Imaging Atmospheric Cherenkov Telescopes (IACTs) gets very complicated at high redshifts, not only because of the lower flux due to the distance of the source, but also due to the consequent absorption of gamma-rays by the extragalactic background light (EBL), affecting VHE sources at z~0.1 and beyond. The farthest source ever detected in the VHE domain was the blazar PKS1424+240, at redshift z>0.6. In the last months MAGIC, a system of two 17 m of diameter IACTs located in the Canary island of La Palma, has been able to go beyond that limit and to push the boundaries for VHE detection to redshifts z~1. The two sources detected and analyzed, blazar S30218+35 (Atel discovery #6349) and FSRQ PKS1441+25 (Atel discovery #7416) are located at redshift z=0.944 and z=0.939 respectively. S30218+35 is also the first gravitational lensed blazar ever detected in VHE. The multiwavelength dataset collected allowed us to test for the first time the present generation of EBL models at such distances. I will show results on MAGIC analysis on S30218+35 and PKS1441-25, including spectral energy distributions and EBL absorption studies, in a multi-wavelength context.