Analysis of Quiet-Sun Internetwork Magnetic Fields Based on Linear Polarization Signals

Orozco-Suárez, D.; Bellot Rubio, L. R.
Bibliographical reference

The Astrophysical Journal, Volume 751, Issue 1, article id. 2 (2012).

Advertised on:
5
2012
Number of authors
2
IAC number of authors
0
Citations
47
Refereed citations
40
Description
We present results from the analysis of Fe I 630 nm measurements of the quiet Sun taken with the spectropolarimeter of the Hinode satellite. Two data sets with noise levels of 1.2 × 10-3 and 3 × 10-4 are employed. We determine the distribution of field strengths and inclinations by inverting the two observations with a Milne-Eddington model atmosphere. The inversions show a predominance of weak, highly inclined fields. By means of several tests we conclude that these properties cannot be attributed to photon noise effects. To obtain the most accurate results, we focus on the 27.4% of the pixels in the second data set that have linear polarization amplitudes larger than 4.5 times the noise level. The vector magnetic field derived for these pixels is very precise because both circular and linear polarization signals are used simultaneously. The inferred field strength, inclination, and filling factor distributions agree with previous results, supporting the idea that internetwork (IN) fields are weak and very inclined, at least in about one quarter of the area occupied by the IN. These properties differ from those of network fields. The average magnetic flux density and the mean field strength derived from the 27.4% of the field of view with clear linear polarization signals are 16.3 Mx cm-2 and 220 G, respectively. The ratio between the average horizontal and vertical components of the field is approximately 3.1. The IN fields do not follow an isotropic distribution of orientations.
Related projects
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics
Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the
Tanausú del
Pino Alemán