Be Abundances in Cool Main-sequence Stars with Exoplanets

Delgado Mena, E.; Israelian, G.; González-Hernández, J. I.; Santos, N. C.; Rebolo, R.
Bibliographical reference

The Astrophysical Journal, Volume 746, Issue 1, article id. 47 (2012).

Advertised on:
2
2012
Number of authors
5
IAC number of authors
4
Citations
18
Refereed citations
16
Description
We present new Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of a sample of 15 cool unevolved stars with and without detected planetary companions. Together with previous determinations, we study Be depletion and possible differences in Be abundances between the two groups of stars. We obtain a final sample of 89 and 40 stars with and without planets, respectively, which covers a wide range of effective temperatures, from 4700 K to 6400 K, and includes several cool dwarf stars for the first time. We determine Be abundances for these stars and find that for most of them (the coolest ones) the Be II resonance lines are often undetectable, implying significant Be depletion. While for hot stars Be abundances are approximately constant, with a slight fall as T eff decreases and the Li-Be gap around 6300 K, we find a steep drop of Be content as T eff decreases for T eff < 5500 K, confirming the results of previous papers. Therefore, for these stars there is an unknown mechanism destroying Be that is not reflected in current models of Be depletion. Moreover, this strong Be depletion in cool objects takes place for all the stars regardless of the presence of planets; thus, the effect of extra Li depletion in solar-type stars with planets when compared with stars without detected planets does not seem to be present for Be, although the number of stars at those temperatures is still small to reach a final conclusion. Based on observations made with UVES at VLT Kueyen 8.2 m telescope at the European Southern Observatory (Cerro Paranal, Chile) in program 86.D-0082A.
Related projects
Project Image
Observational Tests of the Processes of Nucleosynthesis in the Universe
Several spectroscopic analyses of stars with planets have recently been carried out. One of the most remarkable results is that planet-harbouring stars are on average more metal-rich than solar-type disc stars. Two main explanations have been suggested to link this metallicity excess with the presence of planets. The first of these, the “self
Garik
Israelian