CALIFA reveals prolate rotation in massive early-type galaxies: A polar galaxy merger origin?

Tsatsi, A.; Lyubenova, M.; van de Ven, G.; Chang, J.; Aguerri, J. A. L.; Falcón-Barroso, J.; Macciò, A. V.
Bibliographical reference

Astronomy and Astrophysics, Volume 606, id.A62, 10 pp.

Advertised on:
10
2017
Number of authors
7
IAC number of authors
2
Citations
32
Refereed citations
30
Description
We present new evidence for eight early-type galaxies (ETGs) from the CALIFA Survey that show clear rotation around their major photometric axis ("prolate rotation"). These are LSBCF560-04, NGC 0647, NGC 0810, NGC 2484, NGC 4874, NGC 5216, NGC 6173, and NGC 6338. Including NGC 5485, a known case of an ETG with stellar prolate rotation, as well as UGC 10695, a further candidate for prolate rotation, we report ten CALIFA galaxies in total that show evidence for such a feature in their stellar kinematics. Prolate rotators correspond to 9% of the volume-corrected sample of CALIFA ETGs, a fraction much higher than previously reported. We find that prolate rotation is more common ( 27%) among the most massive ETGs (M∗ ≳ 2 × 1011M⊙). We investigated the implications of these findings by studying N-body merger simulations, and we show that a prolate ETG with rotation around its major axis could be the result of a major polar merger, with the amplitude of prolate rotation depending on the initial bulge-to-total stellar mass ratio of its progenitor galaxies. Additionally, we find that prolate ETGs resulting from this formation scenario show a correlation between their stellar line-of-sight velocity and higher order moment h3, opposite to typical oblate ETGs, as well as a double peak of their stellar velocity dispersion along their minor axis. Finally, we investigated the origin of prolate rotation in polar galaxy merger remnants. Our findings suggest that prolate rotation in massive ETGs might be more common than previously expected, and can help toward a better understanding of their dynamical structure and formation origin.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro