The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP)j

Kobayashi, K.; Tsuneta, S.; Trujillo-Bueno, J.; Bando, T.; Belluzzi, L.; Casini, R.; Carlsson, M.; Cirtain, J. W.; De Pontieu, B.; Hara, H.; Ichimoto, K.; Ishikawa, R.; Kano, R.; Katsukawa, Y.; Kim, T.; Kubo, M.; Manso-Sainz, R.; Narukage, N.; Asensio-Ramos, A. ; Robinson, B.; Sakao, T.; Shimizu, T.; Stepan, J.; Suematsu, Y.; Watanabe, H.; West, E.; Winebarger, A. R.
Bibliographical reference

American Geophysical Union, Fall Meeting 2011, abstract #P14C-05

Advertised on:
12
2011
Number of authors
27
IAC number of authors
5
Citations
0
Refereed citations
0
Description
We present an overview of the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) program. CLASP is a proposed sounding rocket experiment currently under development as collaboration between Japan, USA and Spain. The aim is to achieve the first measurement of magnetic field in the upper chromosphere and transition region of the Sun through the detection and measurement of Hanle effect polarization of the Lyman alpha line. The Hanle effect (i.e. the magnetic field induced modification of the linear polarization due to scattering processes in spectral lines) is believed to be a powerful tool for measuring the magnetic field in the upper chromosphere, as it is more sensitive to weaker magnetic fields than the Zeeman effect, and also sensitive to magnetic fields tangled at spatial scales too small to be resolved. The Lyman-alpha (121.567 nm) line has been chosen because it is a chromospheric/transition-region line, and because the Hanle effect polarization of the Lyman-alpha line is predicted to be sensitive to 10-250 Gauss, encompassing the range of interest. Hanle effect is predicted to be observable as linear polarization or depolarization, depending on the geometry, with a fractional polarization amplitude varying between 0.1% and 1% depending on the strength and orientation of the magnetic field. This quantification of the chromospheric magnetic field requires a highly sensitive polarization measurement. The CLASP instrument consists of a large aperture (287 mm) Cassegrain telescope mated to a polarizing beamsplitter and a matched pair of grating spectrographs. The polarizing beamsplitter consists of a continuously rotating waveplate and a linear beamsplitter, allowing simultaneous measurement of orthogonal polarizations and in-flight self-calibration. Development of the instrument is underway, and prototypes of all optical components have been tested using a synchrotron beamline. The experiment is proposed for flight in 2014.