CNO behaviour in planet-harbouring stars. I. Nitrogen abundances in stars with planets

Suárez-Andrés, L.; Israelian, G.; González Hernández, J. I.; Adibekyan, V. Zh.; Delgado Mena, E.; Santos, N. C.; Sousa, S. G.
Bibliographical reference

Astronomy and Astrophysics, Volume 591, id.A69, 9 pp.

Advertised on:
6
2016
Number of authors
7
IAC number of authors
3
Citations
33
Refereed citations
27
Description
Context. Carbon, nitrogen, and oxygen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims: We present a detailed spectroscopic analysis of 74 solar-type stars, 42 of which are known to harbour planets. We determine the nitrogen abundances of these stars and investigate a possible connection between N and the presence of planetary companions. Methods: We used VLT/UVES to obtain high-resolution near-UV spectra of our targets. Spectral synthesis of the NH band at 3360 Å was performed with the spectral synthesis codes MOOG and FITTING. Results: We identify several spectral windows from which accurate N abundance can be obtained. Nitrogen distributions for stars with and without planets show that planet hosts are nitrogen-rich when compared to single stars. However, given the linear trend between [N/Fe] vs. [Fe/H], this fact can be explained as being due to the metal-rich nature of planet hosts. Conclusions: We conclude that reliable N abundances can be derived for metal-rich solar type stars from the near UV molecular band at 3360 Å. We confirm a linear trend between [N/Fe] and metallicity expected from standard models of Galactic chemical evolution. Based on observations collected with the UVES spectrograph at the 8-m Very Large Telescope (VLT) - program IDs: 074.C-0134(A), 075.D-0453(A), 086.D-0082(A), 093.D-0328(A), installed at the Cerro Paranal Observatory.
Type