Comparative Analysis of Image-shift Measurement Algorithms for Solar Shack-Hartmann Wavefront Sensors

Wei, Xiya; Quintero Noda, Carlos; Zhang, Lanqiang; Rao, Changhui
Bibliographical reference

Publications of the Astronomical Society of the Pacific

Advertised on:
11
2023
Number of authors
4
IAC number of authors
1
Citations
1
Refereed citations
0
Description
Observations of the Sun provide unique insights into its structure, evolution, and activity, with significant implications for space weather forecasting and solar energy technologies. Ground-based telescopes offer cost-effective and flexible solutions for high-resolution solar observations, but image quality can be affected by atmospheric turbulence. Adaptive optics (AO) systems equipped with Shack-Hartmann wave front sensors (SH-WFS) enable real-time image correction to mitigate these effects. The accuracy of SH-WFS relies on correlation algorithms that measure wave front shifts, but reaching consistent conclusions regarding their accuracy remains challenging. In this study, we conducted an evaluation and comparison of standard correlation algorithms (the Square Difference Function, Normalized Cross-Correlation, Absolute Difference Function, Absolute Difference Function-Squared, and the Covariance Function in the frequency domain (CFF)) using simulated and authentic solar images. We optimized the algorithms through pre-processing techniques and carefully selected the most suitable window function for the CFF algorithm. Additionally, we analyzed the influence of various factors, such as shift ranges, bias, and the size of live images on the accuracy of algorithms. The consistent findings revealed that the CFF algorithm demonstrates superior measurement accuracy and robustness compared to the others. Choosing the CFF algorithm for solar observations can significantly enhance measurement accuracy, AO system performance, and the overall quality of solar research findings, thereby providing crucial support for space weather forecasting and other related scientific fields.
Related projects
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García