Bibcode
Domínguez-Sánchez, H.; Mignoli, M.; Pozzi, F.; Calura, F.; Cimatti, A.; Gruppioni, C.; Cepa, J.; Sánchez Portal, M.; Zamorani, G.; Berta, S.; Elbaz, D.; Le Floc'h, E.; Granato, G. L.; Lutz, D.; Maiolino, R.; Matteucci, F.; Nair, P.; Nordon, R.; Pozzetti, L.; Silva, L.; Silverman, J.; Wuyts, S.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Magnelli, B.; Pelló, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Riguccini, L.; Tanaka, M.; Tasca, L. A. M.; Tresse, L.; Vergani, D.; Zucca, E.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 426, Issue 1, pp. 330-341.
Advertised on:
10
2012
Citations
28
Refereed citations
26
Description
We empirically MD test the relation between the SFR(LIR)
derived from the infrared luminosity, LIR, and the
SFR(Hα) derived from the Hα emission line luminosity using
simple conversion relations. We use a sample of 474 galaxies at z =
0.06-0.46 with both Hα detection [from 20k redshift Cosmological
Evolution (zCOSMOS) survey] and new far-IR Herschel data (100 and 160
μm). We derive SFR(Hα) from the Hα extinction corrected
emission line luminosity. We find a very clear trend between E(B - V)
and LIR that allows us to estimate extinction values for each
galaxy even if the Hβ emission line measurement is not reliable. We
calculate the LIR by integrating from 8 up to 1000 μm the
spectral energy distribution (SED) that is best fitting our data. We
compare the SFR(Hα) with the SFR(LIR). We find a very
good agreement between the two star formation rate (SFR) estimates, with
a slope of m = 1.01 ± 0.03 in the log SFR(LIR) versus
log SFR(Hα) diagram, a normalization constant of a = -0.08
± 0.03 and a dispersion of σ = 0.28 dex. We study the
effect of some intrinsic properties of the galaxies in the
SFR(LIR)-SFR(Hα) relation, such as the redshift, the
mass, the specific star formation rate (SSFR) or the metallicity. The
metallicity is the parameter that affects most the SFR comparison. The
mean ratio of the two SFR estimators
log[SFR(LIR)/SFR(Hα)] varies by ˜0.6 dex from
metal-poor to metal-rich galaxies [8.1 < log (O/H) + 12 < 9.2].
This effect is consistent with the prediction of a theoretical model for
the dust evolution in spiral galaxies. Considering different
morphological types, we find a very good agreement between the two SFR
indicators for the Sa, Sb and Sc morphologically classified galaxies,
both in slope and in normalization. For the Sd, irregular sample
(Sd/Irr), the formal best-fitting slope becomes much steeper (m = 1.62
± 0.43), but it is still consistent with 1 at the 1.5σ
level, because of the reduced statistics of this sub-sample. Herschel is
a European Space Agency (ESA) space observatory with science instruments
provided by European-led Principal Investigator consortia and with
important participation from NASA.
Related projects
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro
Evolution of Galaxies
Galaxy evolution is a crucial topic in modern extragalactic astrophysics, linking cosmology to the Local Universe. Their study requires collecting statistically significant samples of galaxies of different luminosities at different distances. It implies the ability to observe faint objects using different techniques, and at different wavelengths
Jorge
Cepa Nogue