Bibcode
DOI
Davies, Ben; Figer, Don F.; Law, Casey J.; Kudritzki, Rolf-Peter; Najarro, Francisco; Herrero, Artemio; MacKenty, John W.
Bibliographical reference
The Astrophysical Journal, Volume 676, Issue 2, pp. 1016-1028.
Advertised on:
4
2008
Journal
Citations
98
Refereed citations
78
Description
We present new high-resolution near-IR spectroscopy and OH maser
observations to investigate the population of cool luminous stars of the
young massive Galactic cluster RSGC1. Using the 2.293 μm CO band-head
feature, we make high-precision radial velocity measurements of 16 of
the 17 candidate red supergiants (RSGs) identified by Figer et al. We
show that F16 and F17 are foreground stars, while we confirm that the
rest are indeed physically associated RSGs. We determine that star F15,
also associated with the cluster, is a yellow hypergiant based on its
luminosity and spectroscopic similarity to ρ Cas. Using the
cluster's radial velocity, we have derived the kinematic distance to the
cluster and revisited the stars' temperatures and luminosities. We find
a larger spread of luminosities than in the discovery paper, consistent
with a cluster age 30% older than previously thought (12+/-2 Myr), and a
total initial mass of (3+/-1)×104 Msolar.
The spatial coincidence of the OH maser with F13, combined with similar
radial velocities, is compelling evidence that the two are related.
Combining our results with recent SiO and H2O maser
observations, we find that those stars with maser emission are the most
luminous in the cluster. From this we suggest that the maser active
phase is associated with the end of the RSG stage, when the
luminosity-mass ratios are at their highest.
Related projects
Physical properties and evolution of Massive Stars
This project aims at the searching, observation and analysis of massive stars in nearby galaxies to provide a solid empirical ground to understand their physical properties as a function of those key parameters that gobern their evolution (i.e. mass, spin, metallicity, mass loss, and binary interaction). Massive stars are central objects to
Sergio
Simón Díaz