Dark Energy Survey year 3 results: covariance modelling and its impact on parameter estimation and quality of fit

Friedrich, O.; Andrade-Oliveira, F.; Camacho, H.; Alves, O.; Rosenfeld, R.; Sanchez, J.; Fang, X.; Eifler, T. F.; Krause, E.; Chang, C.; Omori, Y.; Amon, A.; Baxter, E.; Elvin-Poole, J.; Huterer, D.; Porredon, A.; Prat, J.; Terra, V.; Troja, A.; Alarcon, A.; Bechtol, K.; Bernstein, G. M.; Buchs, R.; Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon, R.; Choi, A.; Cordero, J.; Crocce, M.; Davis, C.; DeRose, J.; Diehl, H. T.; Dodelson, S.; Doux, C.; Drlica-Wagner, A.; Elsner, F.; Everett, S.; Fosalba, P.; Gatti, M.; Giannini, G.; Gruen, D.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Jain, B.; Jarvis, M.; MacCrann, N.; McCullough, J.; Muir, J.; Myles, J.; Pandey, S.; Raveri, M.; Roodman, A.; Rodriguez-Monroy, M.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Secco, L. F.; Sevilla-Noarbe, I.; Sheldon, E.; Troxel, M. A.; Weaverdyck, N.; Yanny, B.; Aguena, M.; Avila, S.; Bacon, D.; Bertin, E.; Bhargava, S.; Brooks, D.; Burke, D. L.; Carretero, J.; Costanzi, M.; da Costa, L. N.; Pereira, M. E. S.; De Vicente, J.; Desai, S.; Evrard, A. E.; Ferrero, I.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; Menanteau, F.; Miquel, R.; Morgan, R.; Palmese, A.; Paz-Chinchón, F.; Plazas, A. A. et al.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
12
2021
Number of authors
114
IAC number of authors
1
Citations
72
Refereed citations
59
Description
We describe and test the fiducial covariance matrix model for the combined two-point function analysis of the Dark Energy Survey Year 3 (DES-Y3) data set. Using a variety of new ansatzes for covariance modelling and testing, we validate the assumptions and approximations of this model. These include the assumption of Gaussian likelihood, the trispectrum contribution to the covariance, the impact of evaluating the model at a wrong set of parameters, the impact of masking and survey geometry, deviations from Poissonian shot noise, galaxy weighting schemes, and other sub-dominant effects. We find that our covariance model is robust and that its approximations have little impact on goodness of fit and parameter estimation. The largest impact on best-fitting figure-of-merit arises from the so-called fsky approximation for dealing with finite survey area, which on average increases the χ2 between maximum posterior model and measurement by $3.7{{\ \rm per\ cent}}$ (Δχ2 ≍ 18.9). Standard methods to go beyond this approximation fail for DES-Y3, but we derive an approximate scheme to deal with these features. For parameter estimation, our ignorance of the exact parameters at which to evaluate our covariance model causes the dominant effect. We find that it increases the scatter of maximum posterior values for Ωm and σ8 by about $3{{\ \rm per\ cent}}$ and for the dark energy equation-of-state parameter by about $5{{\ \rm per\ cent}}$.
Related projects
Galaxy proto-cluster
Molecular Gas and Dust in Galaxies Across Cosmic Time
Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of
Helmut
Dannerbauer