Deep MUSE observations in the HDFS. Morpho-kinematics of distant star-forming galaxies down to 108M⊙

Contini, T.; Epinat, B.; Bouché, N.; Brinchmann, J.; Boogaard, L. A.; Ventou, E.; Bacon, R.; Richard, J.; Weilbacher, P. M.; Wisotzki, L.; Krajnović, D.; Vielfaure, J.-B.; Emsellem, E.; Finley, H.; Inami, H.; Schaye, J.; Swinbank, M.; Guérou, A.; Martinsson, T.; Michel-Dansac, L.; Schroetter, I.; Shirazi, M.; Soucail, G.
Bibliographical reference

Astronomy and Astrophysics, Volume 591, id.A49, 26 pp.

Advertised on:
6
2016
Number of authors
23
IAC number of authors
1
Citations
78
Refereed citations
72
Description
Aims: Whereas the evolution of gas kinematics of massive galaxies is now relatively well established up to redshift z ~ 3, little is known about the kinematics of lower mass (M⋆≤ 1010M⊙) galaxies. We use MUSE, a powerful wide-field, optical integral-field spectrograph (IFS) recently mounted on the VLT, to characterize this galaxy population at intermediate redshift. Methods: We made use of the deepest MUSE observations performed so far on the Hubble Deep Field South (HDFS). This data cube, resulting from 27 h of integration time, covers a one arcmin2 field of view at an unprecedented depth (with a 1σ emission-line surface brightness limit of 1 × 10-19 erg s-1 cm-2 arcsec-2) and a final spatial resolution of ≈0.7''. We identified a sample of 28 resolved emission-line galaxies, extending over an area that is at least twice the seeing disk, spread over a redshift interval of 0.2