Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

Balcells, M.; Benn, Chris R.; Carter, David; Dalton, Gavin B.; Trager, Scott C.; Feltzing, Sofia; Verheijen, Mark A. W.; Jarvis, Matt; Percival, Will; Abrams, Don C.; Agocs, Tibor; Brown, Anthony G. A.; Cano, Diego; Evans, Chris; Helmi, Amina; Lewis, Ian J.; McLure, Ross; Peletier, Reynier F.; Pérez-Fournon, I.; Sharples, Ray M.; Tosh, Ian A. J.; Trujillo, I.; Walton, Nic; Westhall, Kyle B.
Bibliographical reference

Ground-based and Airborne Instrumentation for Astronomy III. Edited by McLean, Ian S.; Ramsay, Suzanne K.; Takami, Hideki. Proceedings of the SPIE, Volume 7735, pp. 77357G-77357G-15 (2010).

Advertised on:
7
2010
Number of authors
24
IAC number of authors
3
Citations
0
Refereed citations
0
Description
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.