Detection of a large Be circumstellar disk during X-ray quiescence of XTE J1946+274

Özbey Arabacı, M.; Camero-Arranz, A.; Zurita, C.; Gutiérrez-Soto, J.; Nespoli, E.; Suso, J.; Kiaeerad, F.; García-Rojas, J.; Kızıloǧlu, Ü.
Bibliographical reference

Astronomy and Astrophysics, Volume 582, id.A53, 9 pp.

Advertised on:
10
2015
Number of authors
9
IAC number of authors
2
Citations
10
Refereed citations
9
Description
Aims: We present a multiwavelength study of the Be/X-ray binary system XTE J1946+274 with the main goal of better characterizing its behavior during X-ray quiescence. We also aim to shed light on the possible mechanisms which trigger the X-ray activity for this source. Methods: XTE J1946+274 was observed by Chandra-ACIS during quiescence in 2013 March 12. In addition, this source has been monitored from the ground-based astronomical observatories of El Teide (Tenerife, Spain), Roque de los Muchachos (La Palma, Spain) and Sierra Nevada (Granada, Spain) since 2011 September, and from the TÜBİTAK National Observatory (Antalya, Turkey) since 2005 April. We have performed spectral and photometric temporal analyses in order to investigate the quiescent state and transient behavior of this binary system. Results: Our optical study revealed that a long mass ejection event from the Be star took place in 2006, lasting for about seven years, and another one is currently ongoing. We also found that a large Be circumstellar disk is present during quiescence, although major X-ray activity is not observed. We made an attempt to explain this by assuming the permanently presence of a tilted (sometimes warped) Be decretion disk. The 0.3-10 keV X-ray spectrum of the neutron star during quiescence was well fitted with either an absorbed black-body or an absorbed power-law models. The main parameters obtained for these models were kT = 1.43 ± 0.17 and Γ = 0.9 ± 0.4 (with NH ~ 2-7 × 1022 cm-2). The 0.3-10 keV flux of the source was ~0.8-1 × 10-12 erg-1 cm-2 s-1. Pulsations were found with Ppulse = 15.757(1) s (epoch MJD 56 363.115) and an rms pulse fraction of 32.1(3)%. The observed X-ray luminosity during quiescent periods was close to that of expected in supersonic propeller regimen.
Related projects
Izquierda - Imagen RGB de la nebulosa de Orión y M43 obtenida filtros estrechos con la cámara WFC en el INT: H alfa (rojo), [S II] 6716+30 (verde), [O III] 5007 (azul). Derecha - Imagen en falso color de la nebulosa planetaria NGC 6778. En azul se ve la emisión en la línea de O II tomada con el filtro sintonizable azul del instrumento OSIRIS en el GTC; en verde imagen con el filtro estrecho de [O III] del Nordic Optical Telescope (NOT).
Physics of Ionized Nebulae
The research that is being carried out by the group can be condensed into two main lines: 1) Study of the structure, dynamics, physical conditions and chemical evolution of Galactic and extragalactic ionized nebulae through detailed analysis and modelization of their spectra. Investigation of chemical composition gradients along the disk of our
Jorge
García Rojas