Disrupted Asteroid P/2016 G1. II. Follow-up Observations from the Hubble Space Telescope

Moreno, F.; Licandro, J.; Mutchler, M.; Cabrera-Lavers, A.; Pinilla-Alonso, N.; Pozuelos, F. J.
Bibliographical reference

The Astronomical Journal, Volume 154, Issue 6, article id. 248, 4 pp. (2017).

Advertised on:
12
2017
Number of authors
6
IAC number of authors
2
Citations
4
Refereed citations
4
Description
After the early observations of the disrupted asteroid P/2016 G1 with the 10.4 m Gran Telescopio Canarias (GTC) and modeling of the dust ejecta, we have performed a follow-up observational campaign of this object using the Hubble Space Telescope (HST) during two epochs (2016 June 28 and July 11). The analysis of these HST images with the same model inputs obtained from the GTC images revealed a good consistency with the predicted evolution from the GTC images, so that the model is applicable to the entire observational period from 2016 late April to early July. This result confirms that the resulting dust ejecta was caused by a relatively short-duration event with onset about 350 days before perihelion and spanning about 30 days (HWHM). For a size distribution of particles with a geometric albedo of 0.15, having radii limits of 1 μm and 1 cm, and following a power-law with index ‑3.0, the total dust mass ejected is ∼2 × 107 kg. As was the case with the GTC observations, no condensations in the images that could be attributed to a nucleus or fragments released after the disruption event were found. However, the higher limiting magnitude reachable with the HST images in comparison to those from GTC allowed us to impose a more stringent upper limit to the observed fragments of ∼30 m.
Related projects
Project Image
Minor Bodies of the Solar System
This project studies the physical and compositional properties of the so-called minor bodies of the Solar System, that includes asteroids, icy objects, and comets. Of special interest are the trans-neptunian objects (TNOs), including those considered the most distant objects detected so far (Extreme-TNOs or ETNOs); the comets and the comet-asteroid
Julia de
León Cruz