Diverse Variability of O and B Stars Revealed from 2-minute Cadence Light Curves in Sectors 1 and 2 of the TESS Mission: Selection of an Asteroseismic Sample

Pedersen, M. G.; Chowdhury, Sowgata; Johnston, Cole; Bowman, Dominic M.; Aerts, Conny; Handler, Gerald; De Cat, Peter; Neiner, Coralie; David-Uraz, Alexandre; Buzasi, Derek; Tkachenko, Andrew; Simón-Díaz, S.; Moravveji, Ehsan; Sikora, James; Mirouh, Giovanni M.; Lovekin, Catherine C.; Cantiello, Matteo; Daszyńska-Daszkiewicz, Jadwiga; Pigulski, Andrzej; Vanderspek, Roland K.; Ricker, George R.
Bibliographical reference

The Astrophysical Journal Letters, Volume 872, Issue 1, article id. L9, 11 pp. (2019).

Advertised on:
2
2019
Number of authors
21
IAC number of authors
1
Citations
72
Refereed citations
65
Description
Uncertainties in stellar structure and evolution theory are largest for stars undergoing core convection on the main sequence. A powerful way to calibrate the free parameters used in the theory of stellar interiors is asteroseismology, which provides direct measurements of angular momentum and element transport. We report the detection and classification of new variable O and B stars using high-precision short-cadence (2 minutes) photometric observations assembled by the Transiting Exoplanet Survey Satellite (TESS). In our sample of 154 O and B stars, we detect a high percentage (90%) of variability. Among these we find 23 multiperiodic pulsators, 6 eclipsing binaries, 21 rotational variables, and 25 stars with stochastic low-frequency variability. Several additional variables overlap between these categories. Our study of O and B stars not only demonstrates the high data quality achieved by TESS for optimal studies of the variability of the most massive stars in the universe, but also represents the first step toward the selection and composition of a large sample of O and B pulsators with high potential for joint asteroseismic and spectroscopic modeling of their interior structure with unprecedented precision.
Related projects
Projets' image
Physical properties and evolution of Massive Stars
This project aims at the searching, observation and analysis of massive stars in nearby galaxies to provide a solid empirical ground to understand their physical properties as a function of those key parameters that gobern their evolution (i.e. mass, spin, metallicity, mass loss, and binary interaction). Massive stars are central objects to
Sergio
Simón Díaz