The EDGE-CALIFA survey: the influence of galactic rotation on the molecular depletion time across the Hubble sequence

Colombo, D.; Kalinova, V.; Utomo, D.; Rosolowsky, E.; Bolatto, A. D.; Levy, R. C.; Wong, T.; Sanchez, S. F.; Leroy, A. K.; Ostriker, E.; Blitz, L.; Vogel, S.; Mast, D.; García-Benito, R.; Husemann, B.; Dannerbauer, H.; Ellmeier, L.; Cao, Y.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 475, Issue 2, p.1791-1808

Advertised on:
4
2018
Number of authors
18
IAC number of authors
1
Citations
55
Refereed citations
53
Description
We present a kpc-scale analysis of the relationship between the molecular depletion time (τ^mol_dep) and the orbital time (τorb) across the field of 39 face-on local galaxies, selected from the EDGE-CALIFA sample. We find that, on average, 5 per cent of the available molecular gas is converted into stars per orbital time, or τ^mol_dep˜ 20 τ_orb. The resolved relation shows a scatter of ˜0.5 dex. The scatter is ascribable to galaxies of different morphologies that follow different τ^mol_dep-τorb relations which decrease in steepness from early- to late types. The morphologies appear to be linked with the star formation rate surface density, the molecular depletion time, and the orbital time, but they do not correlate with the molecular gas content of the galaxies in our sample. We speculate that in our molecular gas rich, early-type galaxies, the morphological quenching (in particular the disc stabilization via shear), rather than the absence of molecular gas, is the main factor responsible for their current inefficient star formation.
Related projects
Galaxy proto-cluster
Molecular Gas and Dust in Galaxies Across Cosmic Time
Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of
Helmut
Dannerbauer