Euclid preparation. VI. Verifying the performance of cosmic shear experiments

Euclid Collaboration; Paykari, P.; Kitching, T.; Hoekstra, H.; Azzollini, R.; Cardone, V. F.; Cropper, M.; Duncan, C. A. J.; Kannawadi, A.; Miller, L.; Aussel, H.; Conti, I. F.; Auricchio, N.; Baldi, M.; Bardelli, S.; Biviano, A.; Bonino, D.; Borsato, E.; Bozzo, E.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Brinchmann, J.; Burigana, C.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Charles, Y.; Cledassou, R.; Colodro-Conde, C.; Congedo, G.; Conselice, C.; Conversi, L.; Copin, Y.; Coupon, J.; Courtois, H. M.; Da Silva, A.; Dupac, X.; Fabbian, G.; Farrens, S.; Ferreira, P. G.; Fosalba, P.; Fourmanoit, N.; Frailis, M.; Fumana, M.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B. R.; Giocoli, C.; Graciá-Carpio, J.; Grupp, F.; Hormuth, F.; Ilić, S.; Israel, H.; Jahnke, K.; Keihanen, E.; Kermiche, S.; Kilbinger, M.; Kirkpatrick, C. C.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Le Mignant, D.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maciaszek, T.; Maiorano, E.; Marggraf, O.; Markovic, K.; Martinet, N.; Marulli, F.; Massey, R.; Mauri, N.; Medinaceli, E.; Mei, S.; Mellier, Y.; Meneghetti, M.; Metcalf, R. B.; Moresco, M.; Moscardini, L.; Munari, E.; Neissner, C.; Nichol, R. C.; Niemi, S.; Nutma, T.; Padilla, C.; Paltani, S.; Pasian, F.; Pettorino, V.; Pires, S.; Polenta, G.; Raison, F.; Renzi, A. et al.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
3
2020
Number of authors
130
IAC number of authors
1
Citations
23
Refereed citations
18
Description

Aims: Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear.
Methods: We present an "end-to-end" approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. We propagated residual biases through a pipeline from galaxy properties at one end to cosmic shear power spectra and cosmological parameter estimates at the other end. We did this to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters.
Results: We quantify the impact of an imperfect correction for charge transfer inefficiency and modelling uncertainties of the point spread function for Euclid, and find that the biases introduced can be corrected to acceptable levels.