Bibcode
Euclid Collaboration; Ajani, V.; Baldi, M.; Barthelemy, A.; Boyle, A.; Burger, P.; Cardone, V. F.; Cheng, S.; Codis, S.; Giocoli, C.; Harnois-Déraps, J.; Heydenreich, S.; Kansal, V.; Kilbinger, M.; Linke, L.; Llinares, C.; Martinet, N.; Parroni, C.; Peel, A.; Pires, S.; Porth, L.; Tereno, I.; Uhlemann, C.; Vicinanza, M.; Vinciguerra, S.; Aghanim, N.; Auricchio, N.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Di Giorgio, A. M.; Dinis, J.; Douspis, M.; Dubath, F.; Dupac, X.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Garilli, B.; Gillis, B.; Grazian, A.; Grupp, F.; Hoekstra, H.; Holmes, W.; Hornstrup, A.; Hudelot, P.; Jahnke, K.; Jhabvala, M.; Kümmel, M.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Mei, S.; Mellier, Y.; Meneghetti, M.; Moresco, M.; Moscardini, L.; Niemi, S. -M.; Nightingale, J.; Nutma, T.; Padilla, C.; Paltani, S.; Pedersen, K.; Pettorino, V.; Polenta, G.; Poncet, M.; Popa, L. A.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G. et al.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
7
2023
Journal
Citations
45
Refereed citations
26
Description
Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm, σ8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper.