Bibcode
De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G. et al.
Bibliographical reference
Journal of Cosmology and Astroparticle Physics, Issue 04, article id. 020 (2018).
Advertised on:
4
2018
Citations
29
Refereed citations
28
Description
We discuss the potential of a next generation space-borne Cosmic
Microwave Background (CMB) experiment for studies of extragalactic
sources. Our analysis has particular bearing on the definition of the
future space project, CORE, that has been submitted in response to ESA's
call for a Medium-size mission opportunity as the successor of the
Planck satellite. Even though the effective telescope size will be
somewhat smaller than that of Planck, CORE will have a considerably
better angular resolution at its highest frequencies, since, in contrast
with Planck, it will be diffraction limited at all frequencies. The
improved resolution implies a considerable decrease of the source
confusion, i.e. substantially fainter detection limits. In particular,
CORE will detect thousands of strongly lensed high-z galaxies
distributed over the full sky. The extreme brightness of these galaxies
will make it possible to study them, via follow-up observations, in
extraordinary detail. Also, the CORE resolution matches the typical
sizes of high-z galaxy proto-clusters much better than the Planck
resolution, resulting in a much higher detection efficiency; these
objects will be caught in an evolutionary phase beyond the reach of
surveys in other wavebands. Furthermore, CORE will provide unique
information on the evolution of the star formation in virialized groups
and clusters of galaxies up to the highest possible redshifts. Finally,
thanks to its very high sensitivity, CORE will detect the polarized
emission of thousands of radio sources and, for the first time, of dusty
galaxies, at mm and sub-mm wavelengths, respectively.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López