The First Polarimetric Signatures of Infrared Jets in X-Ray Binaries

Shahbaz, T.; Fender, R. P.; Watson, C. A.; O'Brien, K.
Bibliographical reference

The Astrophysical Journal, Volume 672, Issue 1, pp. 510-515.

Advertised on:
1
2008
Number of authors
4
IAC number of authors
1
Citations
36
Refereed citations
26
Description
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2, and GRS 1915+105. The slopes of the spectra are shallower than what is expected from a standard steady state accretion disk, and can be explained if the near-infrared flux contains a contribution from an optically thin jet. For the neutron star systems, Sco X-1 and Cyg X-2, the polarization levels at 2.4 μm are 1.3%+/-0.10% and 5.4%+/-0.7%, respectively, which is greater than the polarization level at 1.65 μm. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jets in these systems. In the black hole system GRS 1915+105 the observed polarization, although high (5.0%+/-1.2% at 2.4 μm), may be consistent with interstellar polarization. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step toward probing the ordering, alignment, and variability of the outflow magnetic field in a region closer to the central accreting object than is observed in the radio band.
Related projects
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment
Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most
Montserrat
Armas Padilla