Bibcode
Aranzana, E.; Scaringi, S.; Körding, E.; Dhillon, V. S.; Coppejans, D. L.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 481, Issue 2, p.2140-2147
Advertised on:
12
2018
Citations
7
Refereed citations
7
Description
To understand the physical processes governing accretion discs we can
study active galactic nuclei (AGNs), X-ray binary systems (XRBs), and
cataclysmic variables (CVs). It has been shown that XRBs and CVs show
similar observational properties such as recurrent outbursts and
aperiodic variability. The latter has been extensively studied for XRBs,
but only recently have direct phenomenological analogies been found
between XRBs and CVs, including the discovery of the rms-flux relation
and the optical detection of Fourier-dependent time lags. We present a
Fourier analysis of the well-known CV SS Cyg in quiescence based on data
collected at the 4.2 m William Herschel Telescope using ULTRACAM. Light
curves in SDSS filters u', g', and r' were taken simultaneously with
sub-second cadence. The high cadence and sensitivity of the camera allow
us to study the broad-band noise component of the source in the time
range ≈10 000-0.24 s (≈10-4-2 Hz). Soft/negative lags
with an amplitude ≈5 s at a time-scale of ≈250 s were observed,
indicating that the emission in the redder bands lags the emission in
the bluer bands. This effect could be explained by thermal reprocessing
of hard photons in the innermost region of the accretion disc, assuming
a high viscosity parameter α > 0.3, and high irradiation of the
disc. Alternatively, it could be associated with the recombination
time-scale on the upper layer of the accretions disc.
Related projects
Binary Stars
The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines
Pablo
Rodríguez Gil