The Galaxy Activity, Torus, and Outflow Survey (GATOS). III. Revealing the inner icy structure in local active galactic nuclei

García-Bernete, I.; Alonso-Herrero, A.; Rigopoulou, D.; Pereira-Santaella, M.; Shimizu, T.; Davies, R.; Donnan, F. R.; Roche, P. F.; González-Martín, O.; Ramos Almeida, C.; Bellocchi, E.; Boorman, P.; Combes, F.; Efstathiou, A.; Esparza-Arredondo, D.; García-Burillo, S.; González-Alfonso, E.; Hicks, E. K. S.; Hönig, S.; Labiano, A.; Levenson, N. A.; López-Rodríguez, E.; Ricci, C.; Packham, C.; Rouan, D.; Stalevski, M.; Ward, M. J.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
1
2024
Number of authors
27
IAC number of authors
2
Citations
22
Refereed citations
17
Description
We use JWST/MIRI MRS spectroscopy of a sample of six local obscured type 1.9/2 active galactic nuclei (AGN) to compare their nuclear mid-IR absorption bands with the level of nuclear obscuration traced by X-rays. This study is the first to use subarcsecond angular resolution data of local obscured AGN to investigate the nuclear mid-IR absorption bands with a wide wavelength coverage (4.9-28.1 μm). All the nuclei show the 9.7 μm silicate band in absorption. We compare the strength of the 9.7 and 18 μm silicate features with torus model predictions. The observed silicate features are generally well explained by clumpy and smooth torus models. We report the detection of the 6 μm dirty water ice band (i.e., a mix of water and other molecules such as CO and CO2) at subarcsecond scales (∼0.26″ at 6 μm; inner ∼50 pc) in a sample of local AGN with different levels of nuclear obscuration in the range log NHX-Ray (cm−2)∼22 − 25. We find good correlation between the 6 μm water ice optical depths and NHX-Ray. This result indicates that the water ice absorption might be a reliable tracer of the nuclear intrinsic obscuration in AGN. The weak water ice absorption in less obscured AGN (log NHX-ray (cm−2)≲23.0 cm−2) might be related to the hotter dust temperature (> TsubH2O ∼ 110 K) expected to be reached in the outer layers of the torus due to their more inhomogeneous medium. Our results suggest it might be necessary to include the molecular content, such as H2O, aliphatic hydrocarbons (CH−), and more complex polycyclic aromatic hydrocarbon (PAH) molecules, in torus models to better constrain key parameters such as the torus covering factor (i.e., nuclear obscuration).
Related projects
Supermassive black holes modify the distribution of molecular gas in the central regions of galaxies. Credit: HST and C. Ramos Almeida.
Nuclear Activity in Galaxies: a 3D Perspective from the Nucleus to the Outskirts
This project consists of two main research lines. First, the study of quasar-driven outflows in luminous and nearby obscured active galactic nuclei (AGN) and the impact that they have on their massive host galaxies (AGN feedback). To do so, we have obtained Gran Telescopio CANARIAS (GTC) infrared and optical observations with the instruments
Cristina
Ramos Almeida