Bibcode
Nortmann, L.; Pallé, E.; Salz, Michael; Sanz-Forcada, Jorge; Nagel, Evangelos; Alonso-Floriano, F. Javier; Czesla, Stefan; Yan, Fei; Chen, G.; Snellen, Ignas A. G.; Zechmeister, Mathias; Schmitt, Jürgen H. M. M.; López-Puertas, Manuel; Casasayas-Barris, N.; Bauer, Florian F.; Amado, Pedro J.; Caballero, José A.; Dreizler, Stefan; Henning, Thomas; Lampón, Manuel; Montes, David; Molaverdikhani, Karan; Quirrenbach, Andreas; Reiners, Ansgar; Ribas, Ignasi; Sánchez-López, Alejandro; Schneider, P. Christian; Zapatero Osorio, María R.
Bibliographical reference
Science, Volume 362, Issue 6421, pp. 1388-1391 (2018).
Advertised on:
12
2018
Journal
Citations
218
Refereed citations
198
Description
Hot gas giant exoplanets can lose part of their atmosphere due to strong
stellar irradiation, and these losses can affect their physical and
chemical evolution. Studies of atmospheric escape from exoplanets have
mostly relied on space-based observations of the hydrogen Lyman-α
line in the far ultraviolet region, which is strongly affected by
interstellar absorption. Using ground-based high-resolution
spectroscopy, we detected excess absorption in the helium triplet at
1083 nanometers during the transit of the Saturn-mass exoplanet
WASP-69b, at a signal-to-noise ratio of 18. We measured line blueshifts
of several kilometers per second and posttransit absorption, which we
interpret as the escape of part of the atmosphere trailing behind the
planet in comet-like form.
Related projects
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago