Bibcode
Miles-Páez, Paulo A.; Poutanen, Juri; Pallé, E.; Tsygankov, Sergey S.; Piirola, Vilppu; Berdyugin, Andrei V.; Kosenkov, Ilia A.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 468, Issue 4, p.4362-4373
Advertised on:
7
2017
Citations
25
Refereed citations
20
Description
Our simultaneous three-colour (BVR) polarimetric observations of the
low-mass black hole X-ray binary V404 Cyg show a small but statistically
significant change of polarization degree (Δp ∼ 1 per cent)
between the outburst in 2015 June and the quiescence. The polarization
of V404 Cyg in the quiescent state agrees within the errors with that of
the visually close (1.4 arcsec) companion (pR = 7.3 ±
0.1 per cent), indicating that it is predominantly of interstellar
origin. The polarization pattern of the surrounding field stars supports
this conclusion. From the observed variable polarization during the
outburst, we show that the polarization degree of the intrinsic
component peaks in the V band, pV = 1.1 ± 0.1 per
cent, at the polarization position angle of θV =
-7° ± 2°, which is consistent in all three passbands. We
detect significant variations in the position angle of the intrinsic
polarization in the R band from -30° to ∼0° during the
outburst peak. The observed wavelength dependence of the intrinsic
polarization does not support non-thermal synchrotron emission from a
jet as a plausible mechanism, but it is in better agreement with the
combined effect of electron (Thomson) scattering and absorption in a
flattened plasma envelope or outflow surrounding the illuminating
source. Alternatively, the polarization signal can be produced by
scattering of the disc radiation in a mildly relativistic polar outflow.
The position angle of the intrinsic polarization, nearly parallel to the
jet direction (i.e. perpendicular to the accretion disc plane), is in
agreement with these interpretations.
Related projects
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago