The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. XV. The Dynamical Clock: Reading Cluster Dynamical Evolution from the Segregation Level of Blue Straggler Stars

Ferraro, F. R.; Lanzoni, B.; Raso, S.; Nardiello, D.; Dalessandro, E.; Vesperini, E.; Piotto, G.; Pallanca, C.; Beccari, G.; Bellini, A.; Libralato, M.; Anderson, J.; Aparicio, A.; Bedin, L. R.; Cassisi, S.; Milone, A. P.; Ortolani, S.; Renzini, A.; Salaris, M.; van der Marel, R. P.
Bibliographical reference

The Astrophysical Journal, Volume 860, Issue 1, article id. 36, 13 pp. (2018).

Advertised on:
6
2018
Number of authors
20
IAC number of authors
1
Citations
71
Refereed citations
68
Description
The parameter A +, defined as the area enclosed between the cumulative radial distribution of blue straggler stars (BSSs) and that of a reference population, is a powerful indicator of the level of BSS central segregation. As part of the Hubble Space Telescope UV Legacy Survey of Galactic globular clusters (GCs), here we present the BSS population and the determination of A + in 27 GCs observed out to about one half-mass radius. In combination with 21 additional clusters discussed in a previous paper, this provides us with a global sample of 48 systems (corresponding to ∼32% of the Milky Way GC population), for which we find a strong correlation between A + and the ratio of cluster age to the current central relaxation time. Tight relations have also been found with the core radius and the central luminosity density, which are expected to change with the long-term cluster dynamical evolution. An interesting relation is emerging between A + and the ratio of the BSS velocity dispersion relative to that of main sequence turn-off stars, which measures the degree of energy equipartition experienced by BSSs in the cluster. These results provide further confirmation that BSSs are invaluable probes of GC internal dynamics and that A + is a powerful dynamical clock.
Related projects
NGC 2808 Globular Cluster
Milky Way and Nearby Galaxies
The general aim of the project is to research the structure, evolutionary history and formation of galaxies through the study of their resolved stellar populations, both from photometry and spectroscopy. The group research concentrates in the most nearby objects, namely the Local Group galaxies including the Milky Way and M33 under the hypothesis
Martín
López Corredoira