Bibcode
García, R. A.; Mathur, S.; Pires, S.; Régulo, C.; Bellamy, B.; Pallé, P. L.; Ballot, J.; Barceló Forteza, S.; Beck, P. G.; Bedding, T. R.; Ceillier, T.; Roca Cortés, T.; Salabert, D.; Stello, D.
Bibliographical reference
Astronomy and Astrophysics, Volume 568, id.A10, 8 pp.
Advertised on:
8
2014
Journal
Citations
121
Refereed citations
102
Description
Context. The NASA Kepler mission has observed more than 190 000 stars in
the constellations of Cygnus and Lyra. Around 4 years of almost
continuous ultra high-precision photometry have been obtained reaching a
duty cycle higher than 90% for many of these stars. However, almost
regular gaps due to nominal operations are present in the light curves
on different time scales. Aims: In this paper we want to
highlight the impact of those regular gaps in asteroseismic analyses,
and we try to find a method that minimizes their effect on the frequency
domain. Methods: To do so, we isolate the two main time scales of
quasi regular gaps in the data. We then interpolate the gaps and compare
the power density spectra of four different stars: two red giants at
different stages of their evolution, a young F-type star, and a
classical pulsator in the instability strip. Results: The spectra
obtained after filling the gaps in the selected solar-like stars show a
net reduction in the overall background level, as well as a change in
the background parameters. The inferred convective properties could
change as much as ~200% in the selected example, introducing a bias in
the p-mode frequency of maximum power. When asteroseismic scaling
relations are used, this bias can lead to a variation in the surface
gravity of 0.05 dex. Finally, the oscillation spectrum in the classical
pulsator is cleaner than the original one.
Related projects
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur