Bibcode
López-Corredoira, M.; Vazdekis, A.
Bibliographical reference
Astronomy and Astrophysics, Volume 614, id.A127, 11 pp.
Advertised on:
7
2018
Journal
Citations
28
Refereed citations
24
Description
Context. Cosmic chronometers may be used to measure the age difference
between passively evolving galaxy populations to calculate the Hubble
parameter H(z) as a function of redshift z. The age estimator emerges
from the relationship between the amplitude of the rest frame Balmer
break at 4000 Å and the age of a galaxy, assuming that there is
one single stellar population within each galaxy. Aims: First, we
analyze the effect on the age estimates from the possible contamination
(< 2.4% of the stellar mass in our high-redshift sample) of a young
component of ≲ 100 Myr embedded within the predominantly old
population of the quiescent galaxy. Recent literature has shown this
combination to be present in very massive passively evolving galaxies.
Second, we evaluate how the available data compare with the predictions
of nine different cosmological models. Methods: For the first
task, we calculated the average flux contamination due to a young
component in the Balmer break from the data of 20 galaxies at z > 2
that included photometry from the far-ultraviolet to near-infrared at
rest. For the second task, we compared the data with the predictions of
each model, using a new approach of distinguishing between systematic
and statistical errors. In previous work with cosmic chronometers, these
have simply been added in quadrature. We also evaluated the effects of
contamination by a young stellar component. Results: The ages
inferred using cosmic chronometers represent a galaxy-wide average
rather than a characteristic of the oldest population alone. The average
contribution from the young component to the rest luminosity at 4000
Å may constitute a third of the luminosity in some samples, which
means that this is far from negligible. This ratio is significantly
dependent on stellar mass, proportional to M-07.
Consequently, the measurements of the absolute value of the age or the
differential age between different redshifts are at least partially
incorrect and make the calculation of H(z) very inaccurate. Some
cosmological models, such as the Einstein-de Sitter model or
quasi-steady state cosmology, which are rejected under the assumption of
a purely old population, can be made compatible with the predicted ages
of the Universe as a function of redshift if we take this contamination
into account. However, the static Universe models are rejected by these
H(z) measurements, even when this contamination is taken into account.
Related projects
Cosmology with Large Scale Structure Probes
The Cosmic Microwave Background (CMB) contains the statistical information about the early seeds of the structure formation in our Universe. Its natural counterpart in the local universe is the distribution of galaxies that arises as a result of gravitational growth of those primordial and small density fluctuations. The characterization of the
FRANCISCO SHU
KITAURA JOYANES
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro