Bibcode
Yan, F.; Casasayas-Barris, N.; Molaverdikhani, K.; Alonso-Floriano, F. J.; Reiners, A.; Pallé, E.; Henning, Th.; Mollière, P.; Chen, G.; Nortmann, L.; Snellen, I. A. G.; Ribas, I.; Quirrenbach, A.; Caballero, J. A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Cortés Contreras, M.; Czesla, S.; Khalafinejad, S.; Lara, L. M.; López-Puertas, M.; Montes, D.; Nagel, E.; Oshagh, M.; Sánchez-López, A.; Stangret, M.; Zechmeister, M.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
12
2019
Journal
Citations
98
Refereed citations
92
Description
Ultra-hot Jupiters are emerging as a new class of exoplanets. Studying their chemical compositions and temperature structures will improve our understanding of their mass loss rate as well as their formation and evolution. We present the detection of ionized calcium in the two hottest giant exoplanets - KELT-9b and WASP-33b. By using transit datasets from CARMENES and HARPS-N observations, we achieved high-confidence-level detections of Ca II using the cross-correlation method. We further obtain the transmission spectra around the individual lines of the Ca II H&K doublet and the near-infrared triplet, and measure their line profiles. The Ca II H&K lines have an average line depth of 2.02 ± 0.17% (effective radius of 1.56 Rp) for WASP-33b and an average line depth of 0.78 ± 0.04% (effective radius of 1.47 Rp) for KELT-9b, which indicates that the absorptions are from very high upper-atmosphere layers close to the planetary Roche lobes. The observed Ca II lines are significantly deeper than the predicted values from the hydrostatic models. Such a discrepancy is probably a result of hydrodynamic outflow that transports a significant amount of Ca II into the upper atmosphere. The prominent Ca II detection with the lack of significant Ca I detection implies that calcium is mostly ionized in the upper atmospheres of the two planets.
The reduced transmission spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/632/A69
Related projects
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago