Bibcode
Ramírez, I.; Fish, J. R.; Lambert, D. L.; Allende-Prieto, C.
Bibliographical reference
The Astrophysical Journal, Volume 756, Issue 1, article id. 46 (2012).
Advertised on:
9
2012
Journal
Citations
161
Refereed citations
142
Description
We derive atmospheric parameters and lithium abundances for 671 stars
and include our measurements in a literature compilation of 1381 dwarf
and subgiant stars. First, a "lithium desert" in the effective
temperature (T eff) versus lithium abundance (A
Li) plane is observed such that no stars with T
eff ~= 6075 K and A Li ~= 1.8 are found. We
speculate that most of the stars on the low A Li side of the
desert have experienced a short-lived period of severe surface lithium
destruction as main-sequence or subgiant stars. Next, we search for
differences in the lithium content of thin-disk and thick-disk stars,
but we find that internal processes have erased from the stellar
photospheres their possibly different histories of lithium enrichment.
Nevertheless, we note that the maximum lithium abundance of thick-disk
stars is nearly constant from [Fe/H] = -1.0 to -0.1, at a
value that is similar to that measured in very metal-poor halo stars (A
Li ~= 2.2). Finally, differences in the lithium abundance
distribution of known planet-host stars relative to otherwise ordinary
stars appear when restricting the samples to narrow ranges of T
eff or mass, but they are fully explained by age and
metallicity biases. We confirm the lack of a connection between low
lithium abundance and planets. However, we find that no low A
Li planet-hosts are found in the desert T eff
window. Provided that subtle sample biases are not responsible for this
observation, this suggests that the presence of gas giant planets
inhibit the mechanism responsible for the lithium desert.
Related projects
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto