Bibcode
Tepper-García, Thor; Bland-Hawthorn, Joss; Pawlowski, Marcel S.; Fritz, Tobias K.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 488, Issue 1, p.918-938
Advertised on:
9
2019
Citations
34
Refereed citations
30
Description
The Magellanic Clouds (MCs) are the most massive gas-bearing systems
falling into the Galaxy at the present epoch. They show clear signs of
interaction, manifested in particular by the Magellanic Stream, a
spectacular gaseous wake that trails from the MCs extending more than
150° across the sky. Ahead of the MCs is the `Leading
Arm' usually interpreted as the tidal counterpart of the Magellanic
Stream, an assumption we now call into question. We revisit the
formation of these gaseous structures in a first-infall scenario,
including for the first time a Galactic model with a weakly magnetized,
spinning hot corona. In agreement with previous studies, we recover the
location and the extension of the Stream on the sky. In contrast, we
find that the formation of the Leading Arm - that is otherwise present
in models without a corona - is inhibited by the hydrodynamic
interaction with the hot component. These results hold with or without
coronal rotation or a weak, ambient magnetic field. Since the existence
of the hot corona is well established, we are led to two possible
interpretations: (i) the Leading Arm survives because the coronal
density beyond 20 kpc is a factor ≳10 lower than required by
conventional spheroidal coronal X-ray models, in line with recent claims
of rapid coronal rotation; or (ii) the `Leading Arm' is cool gas
trailing from a frontrunner, a satellite moving ahead of the MCs,
consistent with its higher metallicity compared to the trailing stream.
Both scenarios raise issues that we discuss.
Related projects
Galaxy Evolution in the Local Group
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
Matteo
Monelli