MARVELS-1: A Face-on Double-lined Binary Star Masquerading as a Resonant Planetary System and Consideration of Rare False Positives in Radial Velocity Planet Searches

Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Ford, Eric B.; Payne, Matt; Lee, Brian L.; Wang, Ji; Crepp, Justin R.; Gaudi, B. Scott; Eastman, Jason; Pepper, Joshua; Ge, Jian; Fleming, Scott W.; Ghezzi, Luan; González-Hernández, J. I.; Cargile, Phillip; Stassun, Keivan G.; Wisniewski, John; Dutra-Ferreira, Leticia; Porto de Mello, Gustavo F.; Maia, Márcio A. G.; Nicolaci da Costa, Luiz; Ogando, Ricardo L. C.; Santiago, Basilio X.; Schneider, Donald P.; Hearty, Fred R.
Bibliographical reference

The Astrophysical Journal, Volume 770, Issue 2, article id. 119, 21 pp. (2013).

Advertised on:
6
2013
Number of authors
27
IAC number of authors
1
Citations
28
Refereed citations
24
Description
We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a ~6 day orbit. We find significant (~100 m s–1) residuals to the best-fit model for the companion, and these residuals are naïvely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|Pb /Pc – 3| < 10–4). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the ~100 m s–1 residuals are an artifact of spectral contamination from a stellar companion contributing ~15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.
Related projects
Project Image
Observational Tests of the Processes of Nucleosynthesis in the Universe
Several spectroscopic analyses of stars with planets have recently been carried out. One of the most remarkable results is that planet-harbouring stars are on average more metal-rich than solar-type disc stars. Two main explanations have been suggested to link this metallicity excess with the presence of planets. The first of these, the “self
Garik
Israelian