Matter ejections behind the highs and lows of the transitional millisecond pulsar PSR J1023+0038

Baglio, M. C.; Coti Zelati, F.; Campana, S.; Busquet, G.; D'Avanzo, P.; Giarratana, S.; Giroletti, M.; Ambrosino, F.; Crespi, S.; Miraval Zanon, A.; Hou, X.; Li, D.; Li, J.; Wang, P.; Russell, D. M.; Torres, D. F.; Alabarta, K.; Casella, P.; Covino, S.; Bramich, D. M.; de Martino, D.; Méndez, M.; Motta, S. E.; Papitto, A.; Saikia, P.; Vincentelli, F.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
Number of authors
IAC number of authors
Refereed citations
Transitional millisecond pulsars are an emerging class of sources that link low-mass X-ray binaries to millisecond radio pulsars in binary systems. These pulsars alternate between a radio pulsar state and an active low-luminosity X-ray disc state. During the active state, these sources exhibit two distinct emission modes (high and low) that alternate unpredictably, abruptly, and incessantly. X-ray to optical pulsations are observed only during the high mode. The root cause of this puzzling behaviour remains elusive. This paper presents the results of the most extensive multi-wavelength campaign ever conducted on the transitional pulsar prototype, PSR J1023+0038, covering from the radio to X-rays. The campaign was carried out over two nights in June 2021 and involved 12 different telescopes and instruments, including XMM-Newton, HST, VLT/FORS2 (in polarimetric mode), ALMA, VLA, and FAST. By modelling the broadband spectral energy distributions in both emission modes, we show that the mode switches are caused by changes in the innermost region of the accretion disc. These changes trigger the emission of discrete mass ejections, which occur on top of a compact jet, as testified by the detection of at least one short-duration millimetre flare with ALMA at the high-to-low mode switch. The pulsar is subsequently re-enshrouded, completing our picture of the mode switches.
Related projects
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment
Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most
Armas Padilla