Bibcode
Andonie, Carolina; Alexander, David M.; Greenwell, Claire; Puglisi, Annagrazia; Laloux, Brivael; Alonso-Tetilla, Alba V.; Calistro Rivera, Gabriela; Harrison, Chris; Hickox, Ryan C.; Kaasinen, Melanie; Lapi, Andrea; López, Iván E.; Petter, Grayson; Ramos Almeida, Cristina; Rosario, David J.; Shankar, Francesco; Villforth, Carolin
Bibliographical reference
Monthly Notices of the Royal Astronomical Society
Advertised on:
1
2024
Citations
10
Refereed citations
7
Description
In the standard quasar model, the accretion disc obscuration is due to the canonical dusty torus. Here, we argue that a substantial part of the quasar obscuration can come from the interstellar medium (ISM) when the quasars are embedded in compact starbursts. We use an obscuration-unbiased sample of 578 infrared (IR) quasars at z ≈ 1-3 and archival Atacama Large Millimetre/submillimetre Array submillimetre host galaxy sizes to investigate the ISM contribution to the quasar obscuration. We calculate star formation rates (SFR) and ISM column densities for the IR quasars and a control sample of submillimetre galaxies (SMGs) not hosting quasar activity and show that: (1) the quasar obscured fraction is constant up to $\rm SFR\approx 300 \: {\rm M}_{\odot } \: yr^{-1}$, and then increases towards higher SFR, suggesting that the ISM obscuration plays a significant role in starburst host galaxies, and (2) at $\rm SFR\gtrsim 300 \: {\rm M}_{\odot } \: yr^{-1}$, the SMGs and IR quasars have similarly compact submillimetre sizes ($R_{\rm e}\approx 0.5{\!-\!}3\,\mathrm{ kpc}$) and consequently, the ISM can heavily obscure the quasar, even reaching Compton-thick ($N_{\rm H}\gt 10^{24} \rm \: cm^{-2}$) levels in extreme cases. Based on our results, we infer that ${\approx} 10{\!-\!}30~{{ \rm per\ cent}}$ of the IR quasars with $\rm SFR\gtrsim 300 \: {\rm M}_{\odot } \: yr^{-1}$ are obscured solely by the ISM.
Related projects
Nuclear Activity in Galaxies: a 3D Perspective from the Nucleus to the Outskirts
This project consists of two main research lines. First, the study of quasar-driven outflows in luminous and nearby obscured active galactic nuclei (AGN) and the impact that they have on their massive host galaxies (AGN feedback). To do so, we have obtained Gran Telescopio CANARIAS (GTC) infrared and optical observations with the instruments
Cristina
Ramos Almeida