Observed versus simulated halo c-M<SUB>vir</SUB> relations

Leier, Dominik; Ferreras, Ignacio; Negri, Andrea; Saha, Prasenjit
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
2
2022
Number of authors
4
IAC number of authors
2
Citations
2
Refereed citations
2
Description
The concentration - virial mass relation is a well-defined trend that reflects the formation of structure in an expanding universe. Numerical simulations reveal a marked correlation that depends on the collapse time of dark matter haloes and their subsequent assembly history. However, observational constraints are mostly limited to the massive end via X-ray emission of the hot diffuse gas in clusters. An alternative approach, based on gravitational lensing over galaxy scales, revealed an intriguingly high concentration at Milky Way-sized haloes. This letter focuses on the robustness of these results by adopting a bootstrapping approach that combines stellar and lensing mass profiles. We also apply the identical methodology to simulated haloes from EAGLE to assess any systematic. We bypass several shortcomings of ensemble type lens reconstruction and conclude that the mismatch between observed and simulated concentration-to-virial-mass relations are robust, and need to be explained either invoking a lensing-related sample selection bias, or a careful investigation of the evolution of concentration with assembly history. For reference, at a halo mass of 1012M⊙, the concentration of observed lenses is c$_{12}\, \sim 40\ \pm$ 5, whereas simulations give c$_{12}\, \sim 15\ \pm$ 1.
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro