A photometric analysis of Abell 1689: two-dimensional multistructure decomposition, morphological classification and the Fundamental Plane

Dalla Bontà, E.; Davies, R. L.; Houghton, R. C. W.; D'Eugenio, F.; Méndez-Abreu, J.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 474, Issue 1, p.339-387

Advertised on:
2
2018
Number of authors
5
IAC number of authors
1
Citations
9
Refereed citations
8
Description
We present a photometric analysis of 65 galaxies in the rich cluster Abell 1689 at z = 0.183, using the Hubble Space Telescope Advanced Camera for Surveys archive images in the rest-frame V band. We perform two-dimensional multicomponent photometric decomposition of each galaxy adopting different models of the surface-brightness distribution. We present an accurate morphological classification for each of the sample galaxies. For 50 early-type galaxies, we fit both a de Vaucouleurs law and a Sérsic law; S0s are modelled by also including a disc component described by an exponential law. Bars of SB0s are described by the profile of a Ferrers ellipsoid. For the 15 spirals, we model a Sérsic bulge, exponential disc and, when required, a Ferrers bar component. We derive the Fundamental Plane (FP) by fitting 40 early-type galaxies in the sample, using different surface-brightness distributions. We find that the tightest plane is that derived by Sérsic bulges. We find that bulges of spirals lie on the same relation. The FP is better defined by the bulges alone rather than the entire galaxies. Comparison with local samples shows both an offset and rotation in the FP of Abell 1689.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu