Bibcode
Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A4, 22 pp.
Advertised on:
11
2014
Journal
Citations
55
Refereed citations
52
Description
This paper presents the characterization of the in-flight beams, the
beam window functions, and the associated uncertainties for the Planck
Low Frequency Instrument (LFI). Knowledge of the beam profiles is
necessary for determining the transfer function to go from the observed
to the actual sky anisotropy power spectrum. The main beam distortions
affect the beam window function, complicating the reconstruction of the
anisotropy power spectrum at high multipoles, whereas the sidelobes
affect the low and intermediate multipoles. The in-flight assessment of
the LFI main beams relies on the measurements performed during Jupiter
observations. By stacking the datafrom multiple Jupiter transits, the
main beam profiles are measured down to -20 dB at 30 and 44 GHz, and
down to -25 dB at 70 GHz. The main beam solid angles are determined to
better than 0.2% at each LFI frequency band. The Planck pre-launch
optical model is conveniently tuned to characterize the main beams
independently of any noise effects. This approach provides an optical
model whose beams fully reproduce the measurements in the main beam
region, but also allows a description of the beams at power levels lower
than can be achieved by the Jupiter measurements themselves. The
agreement between the simulated beams and the measured beams is better
than 1% at each LFI frequency band. The simulated beams are used for the
computation of the window functions for the effective beams. The error
budget for the window functions is estimated from both main beam and
sidelobe contributions, and accounts for the radiometer bandshapes. The
total uncertainties in the effective beam window functions are: 2% and
1.2% at 30 and 44 GHz, respectively (at ℓ ≈ 600), and 0.7% at 70
GHz (at ℓ ≈ 1000).
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López