Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A16, 66 pp.
Advertised on:
11
2014
Journal
Citations
1000
Refereed citations
937
Description
This paper presents the first cosmological results based on Planck
measurements of the cosmic microwave background (CMB) temperature and
lensing-potential power spectra. We find that the Planck spectra at high
multipoles (ℓ ≳ 40) are extremely well described by the
standard spatially-flat six-parameter λCDM cosmology with a
power-law spectrum of adiabatic scalar perturbations. Within the context
of this cosmology, the Planck data determine the cosmological parameters
to high precision: the angular size of the sound horizon at
recombination, the physical densities of baryons and cold dark matter,
and the scalar spectral index are estimated to be
θ∗ = (1.04147 ± 0.00062) ×
10-2, Ωbh2 = 0.02205 ±
0.00028, Ωch2 = 0.1199 ± 0.0027, and
ns = 0.9603 ± 0.0073, respectively(note that in this
abstract we quote 68% errors on measured parameters and 95% upper limits
on other parameters). For this cosmology, we find a low value of the
Hubble constant, H0 = (67.3 ± 1.2) km s-1
Mpc-1, and a high value of the matter density parameter,
Ωm = 0.315 ± 0.017. These values are in tension
with recent direct measurements of H0 and the
magnitude-redshift relation for Type Ia supernovae, but are in excellent
agreement with geometrical constraints from baryon acoustic oscillation
(BAO) surveys. Including curvature, we find that the Universe is
consistent with spatial flatness to percent level precision using Planck
CMB data alone. We use high-resolution CMB data together with Planck to
provide greater control on extragalactic foreground components in an
investigation of extensions to the six-parameter λCDM model. We
present selected results from a large grid of cosmological models, using
a range of additional astrophysical data sets in addition to Planck and
high-resolution CMB data. None of these models are favoured over the
standard six-parameter λCDM cosmology. The deviation of the
scalar spectral index from unity isinsensitive to the addition of tensor
modes and to changes in the matter content of the Universe. We find an
upper limit of r0.002 < 0.11 on the tensor-to-scalar
ratio. There is no evidence for additional neutrino-like relativistic
particles beyond the three families of neutrinos in the standard model.
Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for
the effective number of relativistic degrees of freedom, and an upper
limit of 0.23 eV for the sum of neutrino masses. Our results are in
excellent agreement with big bang nucleosynthesis and the standard value
of Neff = 3.046. We find no evidence for dynamical dark
energy; using BAO and CMB data, the dark energy equation of state
parameter is constrained to be w =
-1.13-0.10+0.13. We also use the Planck data to
set limits on a possible variation of the fine-structure constant, dark
matter annihilation and primordial magnetic fields. Despite the success
of the six-parameter λCDM model in describing the Planck data at
high multipoles, we note that this cosmology does not provide a good fit
to the temperature power spectrum at low multipoles. The unusual shape
of the spectrum in the multipole range 20 ≲ ℓ ≲ 40 was
seen previously in the WMAP data and is a real feature of the primordial
CMB anisotropies. The poor fit to the spectrum at low multipoles is not
of decisive significance, but is an "anomaly" in an otherwise
self-consistent analysis of the Planck temperature data.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López