Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Dame, T. M.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 536, id.A19
Advertised on:
12
2011
Journal
Citations
336
Refereed citations
315
Description
An all sky map of the apparent temperature and optical depth of thermal
dust emission is constructed using the Planck-HFI (350μm to 2 mm)
andIRAS(100μm) data. The optical depth maps are correlated with
tracers of the atomic (Hi) and molecular gas traced by CO. The
correlation with the column density of observed gas is linear in the
lowest column density regions at high Galactic latitudes. At high
NH, the correlation is consistent with that of the lowest
NH, for a given choice of the CO-to-H2 conversion
factor. In the intermediate NH range, a departure from
linearity is observed, with the dust optical depth in excess of the
correlation. This excess emission is attributed to thermal emission by
dust associated with a dark gas phase, undetected in the available Hi
and CO surveys. The 2D spatial distribution of the dark gas in the solar
neighbourhood (|bII| > 10°) is shown to extend around
known molecular regions traced by CO. The average dust emissivity in the
Hi phase in the solar neighbourhood is found to be
τD/NHtot =
5.2×10-26 cm2 at 857 GHz. It follows roughly
a power law distribution with a spectral index β = 1.8 all the way
down to 3 mm, although the SED flattens slightly in the millimetre.
Taking into account the spectral shape of the dust optical depth, the
emissivity is consistent with previous values derived fromFIRAS
measurements at high latitudes within 10%. The threshold for the
existence of the dark gas is found at NHtot =
(8.0±0.58)×1020 H cm-2 (AV
= 0.4mag). Assuming the same high frequency emissivity for the dust in
the atomic and the molecular phases leads to an average XCO =
(2.54 ± 0.13) × 1020 H2
cm-2/(K km s-1). The mass of dark gas is found to
be 28% of the atomic gas and 118% of the CO emitting gas in the solar
neighbourhood. The Galactic latitude distribution shows that its mass
fraction is relatively constant down to a few degrees from the Galactic
plane. A possible explanation for the dark gas lies in a dark molecular
phase, where H2 survives photodissociation but CO does not.
The observed transition for the onsetof this phase in the solar
neighbourhood (AV = 0.4mag) appears consistent with recent
theoretical predictions. It is also possible that up to half of the dark
gas could be in atomic form, due to optical depth effects in the Hi
measurements.
Corresponding author: J.-P. Bernard, e-mail:
Jean-Philippe.Bernard [at] cesr.fr (Jean-Philippe[dot]Bernard[at]cesr[dot]fr)
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López