Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bot, C.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 536, id.A17
Advertised on:
12
2011
Journal
Citations
137
Refereed citations
128
Description
The integrated spectral energy distributions (SED) of the Large
Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) appear
significantly flatter than expected from dust models based on their
far-infrared and radio emission. The still unexplained origin of this
millimetre excess is investigated here using the Planck data. The
integrated SED of the two galaxies before subtraction of the foreground
(Milky Way) and background (CMB fluctuations) emission are in good
agreement with previous determinations, confirming the presence of the
millimetre excess. In the context of this preliminary analysis we do not
propose a full multi-component fitting of the data, but instead subtract
contributions unrelated to the galaxies and to dust emission. The
background CMB contribution is subtracted using an internal linear
combination (ILC) method performed locally around the galaxies. The
foreground emission from the Milky Way is subtracted as a Galactic Hi
template, and the dust emissivity is derived in a region surrounding the
two galaxies and dominated by Milky Way emission. After subtraction, the
remaining emission of both galaxies correlates closely with the atomic
and molecular gas emission of the LMC and SMC. The millimetre excess in
the LMC can be explained by CMB fluctuations, but a significant excess
is still present in the SMC SED. The Planck and IRAS-IRIS data at 100
μm are combined to produce thermal dust temperature and optical depth
maps of the two galaxies. The LMC temperature map shows the presence of
a warm inner arm already found with the Spitzer data, but which also
shows the existence of a previously unidentified cold outer arm. Several
cold regions are found along this arm, some of which are associated with
known molecular clouds. The dust optical depth maps are used to
constrain the thermal dust emissivity power-law index (β). The
average spectral index is found to be consistent with β = 1.5 and
β = 1.2 below 500μm for the LMC and SMC respectively,
significantly flatter than the values observed in the Milky Way. Also,
there is evidence in the SMC of a further flattening of the SED in the
sub-mm, unlike for the LMC where the SED remains consistent with β
= 1.5. The spatial distribution of the millimetre dustexcess in the SMC
follows the gas and thermal dust distribution. Different models are
explored in order to fit the dust emission in the SMC. It is concluded
that the millimetre excess is unlikely to be caused by very cold dust
emission and that it could be due to a combination of spinning dust
emission and thermal dust emission by more amorphous dust grains than
those present in our Galaxy.
Corresponding author: J.-P. Bernard, e-mail:
jean-philippe.bernard [at] cesr.fr (jean-philippe[dot]bernard[at]cesr[dot]fr)
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López