The post-common-envelope binary central star of the planetary nebula PN G283.7-05.1. A possible post-red-giant-branch planetary nebula central star

Jones, D.; Boffin, H. M. J.; Hibbert, J.; Steinmetz, T.; Wesson, R.; Hillwig, T. C.; Sowicka, P.; Corradi, R. L. M.; García-Rojas, J.; Rodríguez-Gil, P.; Munday, J.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
10
2020
Number of authors
11
IAC number of authors
5
Citations
14
Refereed citations
13
Description
We present the discovery and characterisation of the post-common-envelope central star system in the planetary nebula PN G283.7-05.1. Deep images taken as part of the POPIPlaN survey indicate that the nebula may possess a bipolar morphology similar to other post-common-envelope planetary nebulae. Simultaneous light and radial velocity curve modelling reveals that the newly discovered binary system comprises a highly irradiated M-type main-sequence star in a 5.9-hour orbit with a hot pre-white dwarf. The nebular progenitor is found to have a particularly low mass of around 0.4 M☉, making PN G283.7-05.1 one of only a handful of candidate planetary nebulae that is the product of a common-envelope event while still on the red giant branch. In addition to its low mass, the model temperature, surface gravity, and luminosity are all found to be consistent with the observed stellar and nebular spectra through comparison with model atmospheres and photoionisation modelling. However, the high temperature (Teff ∼ 95 kK) and high luminosity of the central star of the nebula are not consistent with post-RGB evolutionary tracks.

The radial velocity measurements and multi-band photometry of the central star of PN G283.7-05.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/642/A108

Related projects
Izquierda - Imagen RGB de la nebulosa de Orión y M43 obtenida filtros estrechos con la cámara WFC en el INT: H alfa (rojo), [S II] 6716+30 (verde), [O III] 5007 (azul). Derecha - Imagen en falso color de la nebulosa planetaria NGC 6778. En azul se ve la emisión en la línea de O II tomada con el filtro sintonizable azul del instrumento OSIRIS en el GTC; en verde imagen con el filtro estrecho de [O III] del Nordic Optical Telescope (NOT).
Physics of Ionized Nebulae
The research that is being carried out by the group can be condensed into two main lines: 1) Study of the structure, dynamics, physical conditions and chemical evolution of Galactic and extragalactic ionized nebulae through detailed analysis and modelization of their spectra. Investigation of chemical composition gradients along the disk of our
Jorge
García Rojas
Representación de la variable cataclísmica SS Cygni (Chris Moran)
Binary Stars
The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines
Pablo
Rodríguez Gil