Bibcode
Darnley, M. J.; Henze, M.; Steele, I. A.; Bode, M. F.; Ribeiro, V. A. R. M.; Rodríguez-Gil, P.; Shafter, A. W.; Williams, S. C.; Baer, D.; Hachisu, I.; Hernanz, M.; Hornoch, K.; Hounsell, R.; Kato, M.; Kiyota, S.; Kučáková, H.; Maehara, H.; Ness, J.-U.; Piascik, A. S.; Sala, G.; Skillen, I.; Smith, R. J.; Wolf, M.
Bibliographical reference
Astronomy and Astrophysics, Volume 580, id.A45, 23 pp.
Advertised on:
8
2015
Journal
Citations
86
Refereed citations
37
Description
The Andromeda Galaxy recurrent nova M31N 2008-12a had been caught in
eruption eight times. The inter-eruption period of M31N 2008-12a is ~1
yr, making it the most rapidly recurring system known, and a strong
single-degenerate Type Ia supernova progenitor candidate. Following the
2013 eruption, a campaign was initiated to detect the predicted 2014
eruption and to then perform high cadence optical photometric and
spectroscopic monitoring using ground-based telescopes, along with rapid
UV and X-ray follow-up with the Swift satellite. Here we report the
results of a high cadence multi-colour optical monitoring campaign, the
spectroscopic evolution, and the UV photometry. We also discuss
tantalising evidence of a potentially related, vastly-extended,
nebulosity. The 2014 eruption was discovered, before optical maximum, on
October 2, 2014. We find that the optical properties of M31N 2008-12a
evolve faster than all Galactic recurrent novae known, and all its
eruptions show remarkable similarity both photometrically and
spectroscopically. Optical spectra were obtained as early as 0.26 days
post maximum, and again confirm the nova nature of the eruption. A
significant deceleration of the inferred ejecta expansion velocity is
observed which may be caused by interaction of the ejecta with
surrounding material,possibly a red giant wind. We find a low ejected
mass and low ejection velocity, which are consistent with high
mass-accretion rate, high mass white dwarf, and short recurrence time
models of novae. We encourage additional observations, especially around
the predicted time of the next eruption, towards the end of 2015.
Tables 6-8 are available in electronic form at http://www.aanda.orgPhotometry
is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr
(ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A45
Related projects
Binary Stars
The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines
Pablo
Rodríguez Gil