The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data

Molnar, L.; Paparo, M.; Dhillon, V. S.; Marsh, T. R.; Østensen, R.; Lanteri, L.; Janulis, R.; Benatti, S.; Reed, M.; Lutz, R.; Kim, S.-L.; Schuh, S.; Silvotti, R.
Bibliographical reference

Astronomy and Astrophysics, Volume 611, id.A85, 13 pp.

Advertised on:
4
2018
Number of authors
13
IAC number of authors
1
Citations
18
Refereed citations
14
Description
V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O-C method, in a previous article the presence of a planet was inferred with an orbital period of 3.2 years and a minimum mass of 3.2 MJup. Here we present an updated O-C analysis using a larger data set of 1066 h of photometric time series ( 2.5× larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999-2006 of the previous analysis). Up to the end of 2008, the new O-C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O-C trend of f1 changes, and the time derivative of the pulsation period (p.) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O-C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O-C diagrams of f1 and f2, but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analyzed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of p. for f1 and f2: using only the data up to the end of 2008, we obtain p.1 = (1.34 ± 0.04) × 10-12 and p.2 = (1.62 ± 0.22) × 10-12. The long-term variation of the two main pulsation periods (and the change of sign of p.1) is visible also in direct measurements made over several years. The absence of peaks near f1 in the Fourier transform and the secondary peak close to f2 confirm a previous identification as l = 0 and l = 1, respectively, and suggest a stellar rotation period of about 40 days. The new data allow constraining the main g-mode pulsation periods of the star. The complete set of data shown in Fig. 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A85Based on observations obtained at the following observatories: WHT 4.2m, TNG 3.6m, Calar Alto 2.2m, NOT 2.5m, Loiano 1.5m, LOAO 1.0m, MDM 1.3m, Moletai 1.6m, MONET-North 1.2m, Piszkéstető 1.0m, Mercator 1.2m, Wise 1.0m, Lulin 1.0m, Baker 0.6m.
Related projects
Representación de la variable cataclísmica SS Cygni (Chris Moran)
Binary Stars
The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines
Pablo
Rodríguez Gil
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment
Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most
Montserrat
Armas Padilla